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A finite-difference method for computing the frequency and structure of the rotational 
modes of oscillation of enclosed seas is tested against known solutions for: (1) a circular 
basin with a parabolic depth law, (2) a circular, flat basin with a linear variation of the 
Coriolis parameter, and (3) an elliptic paraboloid. Several higher modes of the elliptic 
paraboloid are also calculated. The method uses the non-divergent assumption and solves the 
barotropic vorticity equation in general orthogonal coordinates generated by a conformal map 
of the shoreline onto the unit circle. The numerical procedure for calculating the conformal 
map of an arbitrarily shaped basin is presented. 

1. INTR~D~JCT~ON 

For computation of the currents of oceans and lakes, it is essential to take into 
account the shape of the shoreline and the variations in depth. The simplest ~~rne~ica~ 
method for this is to lay a rectangular finite-difference grid over the lake and mask 
out the land grid points. Much is known about the accuracy of these schemes, and it 
is straightforward to formulate computationally stable, expiicit ~~~tc-diff~~~~cc 
schemes, that conserve mass, momentum, and energy. 

For the simplest flow problem, the prediction of starm surges in a shallow lake, 
this method seems satisfactory. Schwab [ 1,2] showed that for Lake Erie the finite- 
difference method using a IO-km grid worked as well as a ftnite element model, a 5- 
km grid finite-difference model, or an empirical transfer function technnique. For a 
related problem, the calculation of the gravitational oscillations of small closed 
basins, this type of grid is also adequate [3,43. Undoubtedly, a major reason for the 
success of these methods is that water level has a much simpler spatial dist~~b~t~~n 
than current does. Even for an irregular lake the water level displacement due to the 
wind is similar to the classical setup solution for a constant depth lake, and th.e 
seiches have large spatial scales and are not influenced by the details of the shoreline 
shape or the topography. 

In contrast, current patterns are strongly influenced by the details of the lake’s 
shape. This is particularly true for deep lakes, where Coriolis, inertial, buoy~cy, and 
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frictional forces can combine to produce complex coastal boundary layers. The 
influence of grid resolution on computed currents is most clearly illustrated by the 
solutions of Bennett [5]. Even though these calculations were done for a circular lake 
and used cylindrical coordinates, thus eliminating the problem of resolving the shape 
of the lake, the currents were shown to be strongly dependent on the resolution of the 
offshore coordinate. 

For rotational oscillations, it is possible to have nearly the same frequency for 
modes of very different scales. An ocean may have a large-scale Rossby mode and a 
small-scale topographic mode trapped near a seamount, but the periods of the two 
may be equal. In fact, many oceans and lakes have such complex shapes that it may 
not be useful to look for rotational modes in data or to try to compute them. In this 
respect, these modes are fundamentally different from the gravitational modes, for 
which the period increases as the wavelength increases. However, for basins of fairly 
simple shape, it is reasonable to expect to see wind-driven current patterns that look 
like the large-scale normal modes. These modes are interesting in their own right and 
we feel that the accuracy of computing them will give a good indication of how well 
the finite-difference schemes will compute wind-driven currents. We tried to compute 
them explicitly for a rectangular grid but failed; we were only able to reproduce the 
simplest mode of a circular paraboloid. We concluded that it is necessary to use 
general orthogonal coordinates. The “offshore” and the “longshore” coordinates are 
generated by a conformal map of the lake onto the unit circle. We will test the 
accuracy of the method by computing the rotational normal modes of some simple 
shapes and comparing the computed frequencies and structures to exact solutions. 

2. BASIC EQUATIONS 

If friction and density variations are neglected, small amplitude displacements of a 
shallow lake from a motionless state can be described in terms of the vertically 
averaged horizontal velocity and the displacement of the free surface, q. Furthermore, 
for oscillations with frequencies less than the Coriolis parameter,f, it is permissible to 
neglect the variation of the free surface in the continuity equation as long as the basin 
is not as wide as c/f, where c is the velocity of long gravity waves in a non-rotating 
system. The effect of the free surface variation is then felt only through the variation 
of the hydrostatic pressure, gy. With these simplifications, the normal modes depend 
only on the Coriolis parameter and the shape of the basin, and not on gravity, 
density, or the maximum depth; thus, these parameters will all be assumed equal to 
unity. As spatial coordinates we will use the orthogonal curvilinear coordinates p and 
4. The equations of motion can then be written 

(2.1) 
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Here u and v are the components of horizontal velocity in the two locally perpen- 
dicular directions p and 4, M,, and M, are metric functions giving physical distance 
per unit of p and 4, and t is time. The continuity equation is 

where H is the depth. Because of this constraint, the velocity components can be 
described by a single scalar variable, w, the stream function. 

u&I2-& 1 av 
HM, a$' v=HM,~- 

At this point the formulation is very general; p and Q are any orthogonal coor- 
dinates. They could be the Cartesian coordinates of a local plane approximation to 
the earth’s surface or they could be longitude and latitude. For Cartesian coordinates 
the metric functions M, and M, can be constants. For Iongitude and latitude, M, is 
the distance between the meridians (a function of latitude) and M, is simply the 
radius of the earth. The appropriate boundary condition for any closed basis is that 
there be no flow through the coast; i.e., that v is a constant on any boundary. If this 
boundary is mapped onto the unit circle and p and 4 are radial and azimuthal polar 
coordinates then this condition is w = 0 on p = 1. From these and the de~nitiff~ of 
potential vorticity, 

Eqs. (2.1) and (2.2) can be written 

(2.7) 

An alternative form can be obtained by eliminating q, 

This equation, the barotropic vorticity equation, relates the time rate of change of 
vorticity to the rate at which the flow crosses contours of potential vorticity. If the 
potential vorticity is uniform, the flow is steady. Equation (2.8) has normal mode 
solutions of the form 
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where the frequency, o’, is real. If Eq. (2.9) is used in Eq. (2.8) the result is 

which has the form of a generalized eigenvalue problem for the eigenvalue, iu, and the 
eigenvector, 3. 

The rotational oscillations computed here can be considered to be of two types, 
those due to variation in the earth’s vorticity,J; and those due to variations in depth. 
Since f varies as the sine of the latitude, its variation is only significant for an ocean 
basin. For small lakes and seas, the depth variation is more important. The numerical 
technique developed in the following sections will be tested against exact solutions of 
this equation for both types of oscillations. 

3. GENERATION OF ORTHOGONAL COORDINATES BY CONFORMAL MAPPING 

This section describes a practical method for conformally mapping a closed 
domain onto the interior of the unit circle. The purpose of the conformal map is to 
generate a coordinate system in physical space that has the following two properties. 
First, the system is locally orthogonal. This allows us to use Eqs. (2.6) and (2.7) 
without the addition of the terms arising from differentiating the coordinate system. 
Second, the shoreline of the basin is an isoline of the coordinate system. Because of 
this property, the boundary condition that the flow is parallel to the shoreline can be 
incorporated very naturally into finite-difference approximations to (2.6) and (2.7). 

Let the radial and azimuthal coordinates in physical space be Y and 0. The radial 
coordinate, r, has been nondimensionalized by the maximum radius for the basin, R. 
Let the transformed coordinates in the unit circle be p and #. The transformation 
from the unit circle to physical space is expressed as a power series in terms of the 
transformed coordinates, i.e., 

where z = reie is a point in physical space and w = pe’” is a point in the unit circle. 
Equation (3.1) assigns a unique point in physical space to each point in the unit 
circle. 

The coefficients a, are determined numerically from a set of discrete points in 
physical space which are on the shoreline of the basin. The coordinates of the 
boundary points are zj = rjeiej. These points are mapped onto the circumference of 
the unit circle @ = 1) so that (3.1) becomes 

m 
zj= C aneinmj 

n=O 
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for boundary points. The transformed azimuthal coordinates of the boundary ~~~~ts~ 
$jjs can be calculated without knowledge of the expansion coefficients, a,, with an 
iterative procedure described by Swinford [6]. The startmg points for the 
are the coordinates in physical space, .z~,~, normalized so that /z~,~/ < 1. The second 
subscript is used to indicate iteration number. These points are transformed by a 
recursion formula that produces points ever closer to the unit circle. The recursion for 
the iteration is 

Z”i,k-t J =I-- 
2 log ak 

Iog((zj,ke-iXk - ~l~)/(z~,~e-~~k - I/a,))’ 

where ak and xk are the radial and azimuthal coordinates of the boundary point 
nearest the origin (farthest from the unit circle) at the kth iteration. S 
pointed out that (3.3) converges onto the unit circle such that 1 - ak 
practice, the iterations are carried out until 1 - ak ( 6, where 6 is a speciEed 
parameter. Because the conformal mapping of the domain onto the unit circle is 
unique, the convergence of (3.3) determines #j for each zi. 

If the dj were equally spaced on the unit circle, the functions would be ~~er~~a~~~ 
orthogonal and one could use a Fourier transform technique to calculate a,. For 
unequally spaced #j, the a, are determined by minimizing the error in (3.2) for 
successive values of m. If the series (3.2) is truncated at m = 0, we have 

zj=a,. 

The sum of the squared errors for 1 discrete points on the boundary weighted by arc 
length on the unit circle is 

E* = +-,$, (zj- ao)(zj - a,)* lei@j+i _ eiOj-lla 

The condition for minimizing E2 is 

Now let m = 1 and define 

Then minimize 

zj = zj - a, = a, e”*i. 
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al=-& 2 z~~-i~jj~i~j+l-,imj-~I. 
.I- 1 

(3.9) 

This procedure works until the successive error terms continue to decrease only at the 
expense of the power series (3.2) diverging for some z # zj on the unit circle. A prac- 
tical limit is m < Z/5. This problem is equivalent to allowing a sufficient number of 
degrees of freedom for statistically reliable results in time series analysis. 

An elliptic basin was chosen as a test case for the conformal mapping procedure 
described above. The analytic transformation of the interior of an ellipse to the 
interior of the unit circle is given in [7] as 

z=sin [&SK1 (-&4)1. (3.10) 

Here SKI is the inverse of the Jacobi elliptic function with nome 
4 = ((E - l)l(& + 1x where E is the ratio of the major to the minor axis of the 
ellipse. The periods of the doubly periodic function sn are 40 and 2iD dm By 
using the power series expansions for sin and sn given in [B], we can find the first few 
coefficients of the expansion of z in terms of W. These are 

(3.11) 

a, 
a5 =s 

(3 + 28 + 3d4) (1 +d*) 
10 - 3 (%)2+k-(&)4]* 

TO test the conformal mapping procedure, we calculated I discrete points on the 
boundary of an ellipse as 

(3.12) 

The points were normalized so the Izj) < 1, and (3.3) was applied iteratively until 
1 - ak < 10M4. The a, were then calculated with the original zj up to YE = l/5. The 
results for elliptical basins with E = 2 and E = 3 for various 2 are shown in Table I. 
Analytical coefficients were determined from (3.11) with the appropriate value of the 
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TABLE I 

Computed and Analytic Expansion Coefficients for Elliptic Basins 

1 

&=2 
- 

a3 a5 Iterations Relative error 

100 0.71194 0.17458 0.08223 309 0.026 
200 0.70574 0.17590 0.08394 565 0.011 
400 0.70275 0.17649 0.08482 999 0.006 

Analytic 0.69970 0.17708 0.08571 - - 

&=3 

al a3 Iterations Relative error 

100 0.45770 0.13523 0.07475 284 0.140 
200 0.4493 1 0.13399 0.07433 503 0.070 
400 0.44524 0.13339 0.07421 851 0.045 
800 0.44325 0.13309 0.07414 1513 0.019 

Analytical 0.43823 0.13205 0.01316 

nome 9. The parameters d and D were calculated from the tables of elliptic f~~~t~o~s 
in [8]. Relative error is computed as 

E= (3.13) 

The number of iterations for convergence of (3.3) is also shown. The magnitudes of 
even-numbered coeffkients and imaginary parts of all coeffkients were at least three 
orders of magnitude smaller than a,. For E = 3 and m = 800, 5 minutes of CPU time 
was required on the CDC 6600 computer. 

Since the mapping onto the unit circle is .conformal, the contours of p in t 
physical plane are orthogonal to those of (6. For computational purposes, however, 
the grid points need not be equally spaced in p and 4. For the circular test cases, we 
chose to use p’ =p2 and 4’ = 4, which, as Beardsley [9] pointed out, makes the 
number of grid points per unit area a constant. For the elliptical test case we chose 
p’ = p’. The values of 4 were chosen so that at the shoreline the grid points were 
approximately equidistant in arc length. This seems to give a smooth distribution of 
grid points; but we can offer no general rules for choosing a grid. 

4. FINITE DIFFERENCES 

We constructed the finite-difference scheme with two criteria in mind. First? it 
should conserve energy so that there are no growing or decaying normal odes, 
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Second, it should be as accurate as possible. Energy conservation will be guaranteed 
by using one of the Arakawa [ 10, 1 l] methods. We will consider the two momentum 
equations, (2.6) and (2.7), to be the primary statement of the problem. The pressure, 
q, is a dummy variable to be eliminated by adding and subtracting finite-difference 
equations. For the central grid point in the conformal map, this will be done by 
summing the finite-difference equivalent of (2.7) around the center and requiring that 
r be single-valued. For all other points, it amounts to forming the equivalent of the 
vorticity equation, (2.8). One does not lose flexibility by introducing this dummy 
pressure since all the Arakawa’s energy conserving schemes for the vorticity equation 
can be written in this manner. 

Since this pressure is to be eliminated, there is no penalty for subtracting the 
quantity y@ from it, where y is an arbitrary constant. Then Eqs. (2.6) and (2.7) can 
be rewritten as follows: 

(4.1) 

where fi = q - yt+vP. 
With appropriate finite-difference formulas for the terms on the left-hand side of 

these equations, all of Arakawa’s energy conserving schemes correspond to a given 

017 Pi-I,/-1 *i-l. i 

FIG. 1. Finite-difference grid in general orthogonal coordinates. 
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choice of y. It is easiest to visualize the construction of these formulas with the aid of 
Fig. 1. This figure shows a simple finite-difference grid in which the radial coord~~~t~ 
is split into three equal segments and the azimuthal coordinate is split into six. 
define the coordinates of the image point in the physical plane, x and y, at the solid 
circles. Although the metrics, M, and M,, may be defined in a number of ways, we 
will use the simple definitions 

MD = I/(x-x~-~)’ + (Y- Yj-i)‘> 
M+=d(~-Xi-l)’ + (.Y- .Y-l)‘> 

(43) 

where i increases in the radial and j increases in the azimuthal direction. Thus, for 
M, at the open circle points and for Mp at the triangle points, the metrics are simply 
the distances between points in the physical plane. When these metrics are nee 
other points, simple averages are used. Thus at open circle points 

Mo=b[M,+M,(j+ l)+M,(i- l)+M,(i- a,j+ I)]. (44) 

These definitions of the coordinates and metrics affect the definition of the finite- 
difference kinetic energy, but do not affect conservation of energy. 

It is natural to form a finite-difference equation for Eq. (4.1) at the open circle 
points and one for Eq. (4.2) at the triangle points. Using simple centered ~~~ere~c~s 
and simple arithmetic averaging where required yields 

(4.5) 

; [-g$(Y- Y/i-J 
P 

-~(p+pi-l)(Vj+l+ Wi-l,j+r-Wj-1-~i-l,j-1) 

If one multiplies (4.5) by vjM1 - y and (4.6) by XJI - wi-1 and adds the two one 
obtains the energy equation 
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+ (W+Yi-l)(pj+l +pi-lj+l-pj-l-pi-l,j-l)(Y-Wi-l)] 

+ (r”i+l -  @(W -  Yj- I> -  Cl^rj+ 1 -  f)(Y -  Vi-l)* (4.7) 

It is straightforward to verify, as in [ 111, that the terms on the right-hand side of 
this equation vanish when summed over the basin as long as the stream function on 
the boundary is zero and an equation for the central stream function equation is 
obtained by summing Eq. (4.2) around the center. As in the continuous case, the 
normal mode solutions can be represented as v/(i, j, t) = Re [I+?(& j)eiul], where 1,8 is 
complex. This spatial discretization yields a tractable eigenvalue problem, there is 
thus no need to discretize the time derivative. The fact that energy is conserved 
ensures that B is real. 

In the next section, we will test these methods against exact solutions for closed 
basins, but first, it is useful to study their accuracy for the classical case of pure 
Rossby waves for a constant depth infinite plane. This eliminates the effect of the 
curvilinear coordinates and simplifies the Jacobian term. The vorticity equation is 

a a%f a2v 
at a2 ( 

-- 
+ a$ > 

-pg, 

where /3 = aflay is a constant. 
Plane wave solutions of the form 

y=e i(fcxtAy+ot) 

obey the dispersion relation 

(4.8) 

(4.9) 

(4.10) 

With a uniform grid (x = idx, y =&4x), the finite-difference equation is 

= Odx y(y. (1-Y) -- 
’ 2 [ z+l -Vi-l)+ 2 -(Wi+l,j+l+ v/i+l,j-l-Vi-l,jtl-Vi-l,j-1) 

I 

(4.11) 

The finite difference dispersion relation is 

B = -,!3(sin rcdx)/Ax)[y + (1 - y) cos AAx] 
[(2 cos KAX f 2 cos LAX - 4)/dxz] * 

(4.12) 
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The ratio of this frequency to the exact frequency is 

s= [(2 
(sin &x/Kdx)[y + (1 - y) cos &lx] 

cos 7cdx + 2 cos ax - 4)/(d + A”) Ax2 ] * 
(4.13) 

The numerator in this expression is the relative error in evaluating the Jacobian ter 
the denominator is the error in the Laplacian. The Laplacian is underestimated for all 
values of the wave numbers, IC and ;1. Thus, to keep the ratio close to ~~~ty~ one 
should choose a value of y so that the Jacobian is underestimated by a similar factor. 
This, of course, cannot be done in general-for short x-wavelengths the ratio will be 
small no matter what the y-wavelength or choice of y is. In fact, for an x-~ave~e~gt~ 
of 2dx the ratio is zero. 

Three values of y are of particular interest because they correspond to three of 
Arakawa’s Jacobians. 

y= 1 :J4, 

y=O:J,, 

y=2/3 :J,. 

FIG. 2. S, ratio of finite difference frequency to the exact one for three forms of the Jacobian term. 
(a) y = 1, (b) y = 0, (c) y = 2/3. 

581/M/2-10 
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The numbering is from Arakawa [ 111. J4 is the simplest centered difference scheme. 
J3 is the smplest form that can be derived from the original equations (2.1) and (2.2). 
J, is the form Arakawa recommends because it conserves not only kinetic energy and 
vorticity, as the others do, but also squared vorticity. 

In Figs. 2a, b, and c we have plotted S, the ratio of the finite-difference frequency 
to the exact one versus the number of grid points per x-wavelength and the number of 
grid points per y-wavelength. The simplest scheme, J4, is generally accurate except 
that the frequency is underestimated for short x-wavelengths and is overestimated for 
short y-wavelengths. J, is very inaccurate-the frequency is exactly zero for a y- 
wavelength of 4Ax. and is negative for shorter waves. Arakawa’s favorite scheme, J,, 
underestimates the frequency for all wavelengths, but it is more consistent in that the 
error does not vary as much with wavelength as for the other two. 

We found these conclusions to be true for the more complicated cases of the next 
section. The eigenfunctions were nearly the same no matter which scheme we used, 
and the frequencies were consistent with the results for pure Rossby waves. We chose 
to use J4 because it is slightly more accurate for the large-scale modes. 

5. CIRCULAR AND ELLIPTIC TESTS 

The infinite ocean beta-plane solutions of the previous section test the accuracy of 
the frequencies but not of the spatial structure of the modes or of the effects of the 
conformal mapping. The best test of the method requires a closed basin and thus a 
non-Cartesian coordinate system. Fortunately there are several exact solutions 
known. 

The simplest case for which all the rotational modes are known is a circular basin 
with a uniform Coriolis parameter and a parabolic depth law. Since all the depth 
contours are concentric circles, the problem is separable in the azimuthal coordinate; 
the modes can be classified by the number of nodal diameters, m, and by the number 
of nodal circles, n. The nodal diameters and circles are curves other than the 
boundary for which the stream function is zero for a given time. Since the depth 
decreases monotonically from a maximum in the center to zero at the shore, all the 
modes propagate counterclockwise around the basin, the nodal circles remaining 
fixed and the nodal diameters rotating at a uniform rate. The frequency law [12, 
Sect. 2121 is 

f 2(n+2)(m+n+l) --1 -= (5.1) (T m 

This number can be interpreted as the period expressed in units of the inertial period, 
27LIJ: The shortest period, in the limit of large m, is three inertial periods. The period 
of the simplest mode, with one nodal diameter and no nodal circles, is seven inertial 
periods. 

We computed these modes using 16 grid points in the longshore coordinate and 10 
in the offshore coordinate. Equation (2.10) was discretized in p and 4 using the finite 
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TABLE Ii 

Computed and Theoretical Periods of Rotational Modes in a Circular Paraboloid. 
Theoretical Periods Are in Parentheses 

Nodai circles n 

Nodal diameters m 0 1 2 3 4 

1 (::t) 
2 5.5 

(5.0) 
3 

$& 

4 
(::;) 

5 
(I::) 

17.2 
(17.0) 

11.7 
(1l.Q) 

10.6 
(9.W 
11.1 
(8.0) 
13.1 
(7.4) 

30.1 
(31.0) 

19.2 
(19.0) 

17.2 
(15.0) 

17.7 
(13.0) 

20.8 
(I 1.8) 

46.5 
(49.0) 

28.5 
(29.0) 

25.5 
(22.3) 

26.3 
(i9.0) 

30.7 
(17.0) 

67.9 
(7 1.0) 

39.8 
(41.0) 

35.0 
(31.0) 

36.5 
(26.0) 

42.4 
(23.0) 

difference scheme discussed in the previous section with y = 
is no need to discretize the time derivative. The resulting numerical ei~e~vai~~ 
problem was solved by the technique of Moler and Stewart [ 161. The computed and 
theoretical periods are presented in Table II for 25 of the simplest modes. As could be 
expected, the method is most accurate for the modes of large spatial scale. For the 
more complex modes, the method generally overestimates the period; this is 
consistent with the results of the infinite beta-plane of Section 4. 

Another case for which all the normal modes are known is that of a circular ba 
of constant depth with a linear variation of the Coriolis parameter. equation (4. 
written in polar coordinates is 

he solutions of this equation that satisfy the boundary condition w = 0 on Y = 1 are 

JAW e iwrcos B + d) 3 (5.3) 

where J, is the Bessel function of the first kind and K(m, n) is the inverse of its nth 
zero. The period of oscillation is 

T(m,n)=$= 47x(m, n) 
RB . 
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For this solution, the allowable range of m is 0 to co and the range of n is 1 to co. 
For m = 0, there is only one solution for each value of n since sine 0 = 0, but for 
m > 0 there are two solutions for each value of IZ. As in the case of the circular 
paraboloid, each mode has m nodal diameters. Unlike the paraboloid, the diameters 
are fixed in time. Each mode also has n - 1 nodal circles; thus the circular ocean is 
divided into it . (m + 1) independent sectors bounded by zero stream functions 
contours. Inside each of these sectors, the exponential function of Eq. (5.3) gives a 
westward phase propagation. 

Because the finite-difference equations for the circular paraboloid are separable 
into products of azimuthal and radial functions, the solutions could be easily iden- 
tified. This is not true for the circular beta-plane. As a consequence, we could 
classify only about six of the modes of largest space scale. The fundamental mode 

FIG. 3. Stream functions for rotational modes of the cricular beta-plane for m = 1, n = 1. 
Left-cosine mode. Right-sine mode. The top pattern is for one quarter period after the bottom pattern. 
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(m = 0, n = 1) as given by Beardsley [9] has a computed period (in units of ~/~~~ of 
31.7 compared to the theoretical value of 30.2. Figure 3 illustrates the pair 
corresponding to (m = 1, n = 1). The theoretical period is 48.2; the calculated perio 
are 52.6 for the cosine mode and 52.0 for the sine mode. 

We turn our attention now to a more difficult problem-the ca~cuiatio~ of the 
rotational modes of an elliptical paraboloid. This is the first problem in which we 
actually test the use of general orthogonal coordinates. There are two stages to the 
construction-the map onto the unit circle discussed in Section 3 and the choice of a 
suitable stretched version of the conformal coordinates. We make this choice 
on aesthetic grounds; the prettiest maps are usually the smoothest and thus pr 
minimize truncation error. The map for the 2 x 1 ellipse is given in Fig. 4. 

Only a few of the rotational modes of an elliptic paraboloid are known, having 
been discovered by Ball [ 131. The two simplest modes have periods of 

and 

(5.5) 

where p = (E’ - I)/(&’ + 1) and E is the ratio of the major axis to the minor axis. 
These two reduce to the two circular paraboioid modes with no nodal circles and one 

FIG. 4. Numerical grid for 2 x 1 ellipse generated by conformal mapping procedure. 



FIG. 5. Stream functions for the rotational modes of the elliptic paraboloid. In each box the top 
pattern is for one-quarter period after the bottom pattern. The periods are given in Table III. 

374 
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TABLE III 

Computed and Some Theoretical Periods of 
Rotational Modes in a 2 x 1 Elliptic Paraboloid. 

Theoretical Periods are in Parentheses 

Radial structure n 

Azimuthal structure m 5 : 

1 8.42 21.8 
(8.46) (20.9) 

2 6.33 14.7 
(5.78) 

3 5.65 14.2 
(4.85) 

and two nodal diameters, respectively. For an ellipse twice as long as it is wide 
(E = 2), these periods are 8.46 and 5.78 compared to 7.0 and 5.0 for the circle. 

Ball also gives an equation that can be used to calculate two more modes 

,e4[(221 - 45~“)’ - 104*p*] - 2&l - p2)(1385 - 153~1’) i 9(1 - p2)’ = 0, (5x5) 

where @ = u/J For the circle, these have periods of 17 and 4.33 inertial periods. For 
the 2 x 1 ellipse, the periods are 20.9 and 4.85. One can see from Table II that the 
longer period mode should have one nodal circle and one nodal diameter an 
short period mode should have no nodal circles and three nodal diameters.. 

From the structures of the first two modes given in Figs. 1 and 2 of l”s paper 
and the structures in the last two modes in a circular basin, we have i tified, all 
four of these modes in our calculations. We have also been able to identify two more 
calculated modes that seem to have the correct structures and periods to complete the 
2 x 3 matrix of modes given in Fig. 5. These six modes correspond to the upper left- 
hand corner of Table II, with “radial” structure increasing to the right an 
‘iazimuthal” structure increasing downwards. The calculated periods, with alB’s 
theoretical periods in parentheses, are given in Table III. Note that the error is 
comparable to that of the circular paraboloid and that for all the modes the lesions 
are larger for the ellipse than for the circle. 

6. CONCLUSION§ 

The method for calculating rotational modes presented in this paper has produced 
good results for several analytical basins. The effect of truncation errors on c~rn~~t~d 
frequencies is small for modes with large spatial scales, but increases rapidly with 
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more complicated structures. Rotational mode periods in the circular and elliptical 
paraboloids tend to decrease with increasing azimuthal structure and increase with 
increasing radial structure. Computed frequencies deviate from this pattern as spatial 
structure becomes more complicated. 

We developed the numerical method with the goal of computing rotational modes 
in the Great Lakes. The method is general enough to apply to arbitrary topography, 
but it is seen that especially elongated basins are not amenable to this treatment as 
truncation errors become significant both in the conformal mapping procedure and in 
the eigenvalue problem. For elongated lakes or complex basin shapes, coordinates 
generated in this manner would correspond to a very uneven distribution of grid 
points in the physical plane and it might be better to use the finite element method of 
Platzman [ 141 or the triangular finite difference mesh of Thacker [ 171. 

At present, the most promising set of observations that might be used to verify 
techniques for computing rotational modes are those of Saylor et al. [ 151 for Lake 
Michigan. Unfortunately, Lake Michigan is long and has a complex topography with 
two major basins. Perhaps a basin with a simpler topography like Lake Kinneret or 
the Black Sea, will be a better proving ground for the calculation and observation of 
rotational modes. 
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